Product datasheet
 Characteristics
 ATV212HD15M3X

Green
Premium"

Main	
Range of product	Altivar 212
Product or component type	Variable speed drive
Device short name	ATV212
Product destination	Asynchronous motors
Product specific application	Pumps and fans in HVAC
Assembly style	With heat sink
Phase	3 phases
Motor power kW	15 kW
Motor power hp	20 hp
[Us] rated supply voltage	$200 \ldots 240 \mathrm{~V} \mathrm{-15} \mathrm{\ldots ..10} \mathrm{\%}$
Supply voltage limits	$170 \ldots .264 \mathrm{~V}$
Supply frequency	$50 \ldots 60 \mathrm{~Hz} \mathrm{-} \mathrm{5...5} \mathrm{\%}$
Network frequency	$47.5 \ldots 63 \mathrm{~Hz}$
EMC filter	Without EMC filter
Line current	45.5 A 240 V

Complementary

Apparent power	23.2 kVA 240 V
Prospective line Isc	22 kA
Continuous output current	61 A 230 V
Maximum transient current	67.1 A 60 s
Speed drive output frequency	0.5... 200 Hz
Nominal switching frequency	12 kHz
Switching frequency	$12 . .16 \mathrm{kHz}$ with derating factor $6 . . .16 \mathrm{kHz}$ adjustable
Speed range	1... 10
Speed accuracy	+/-10\% of nominal slip 0.2 Tn to Tn
Torque accuracy	+/-15\%
Transient overtorque	120% of nominal motor torque +/-10\% 60 s
Asynchronous motor control profile	Voltage/frequency ratio, 2 points Voltage/frequency ratio, 5 points Flux vector control without sensor, standard Voltage/frequency ratio - Energy Saving, quadratic U/f Voltage/frequency ratio, automatic IR compensation (U/f + automatic Uo)
Regulation loop	Adjustable PI regulator
Motor slip compensation	Adjustable Automatic whatever the load Not available in voltage/frequency ratio motor control
Local signalling	1 LED red DC bus energized
Output voltage	<= power supply voltage
Isolation	Electrical between power and control
Type of cable	IEC cable without mounting kit $1113^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$ copper $90^{\circ} \mathrm{C}$ XLPE/EPR IEC cable without mounting kit $145^{\circ} \mathrm{C}$ copper $70^{\circ} \mathrm{C}$ PVC UL 508 cable with UL Type 1 kit $340^{\circ} \mathrm{C}$ copper $75^{\circ} \mathrm{C}$ PVC
Electrical connection	Terminal $25 \mathrm{~mm}^{2}$ AWG $3 \mathrm{~L} 1 / \mathrm{R}, \mathrm{L} 2 / \mathrm{S}, \mathrm{L} 3 / \mathrm{T}$
Tightening torque	$39.82 \mathrm{lbf} . \mathrm{in}(4.5 \mathrm{~N} . \mathrm{m}) 40 \mathrm{lb} . \mathrm{in} \mathrm{L1/R}, \mathrm{L2/S}, \mathrm{L3/T}$ 0.6 N.m VIA, VIB, FM, FLA, FLB, FLC, RY, RC, F, R, RES

Supply
Internal supply for reference potentiometer (1 to 10 kOhm) $10.5 \mathrm{VDC}+/-5 \%<=10 \mathrm{~A}$
overload and short-circuit protection
Internal supply 24 V DC $21 . . .27$ V <= 200 A overload and short-circuit protection

Analogue input number	2
Analogue input type	Switch-configurable voltage VIA $0 . .10$ V DC 24 V max 30000 Ohm 10 bits Configurable voltage VIB 0... 10 V DC 24 V max 30000 Ohm 10 bits Configurable PTC probe VIB 0... 6 probes 1500 Ohm Switch-configurable current VIA $0 . .20 \mathrm{~mA} 250$ Ohm 10 bits
Sampling duration	$2 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ F discrete $2 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ R discrete $2 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ RES discrete $3.5 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ VIA analog $22 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ VIB analog
Response time	$\begin{aligned} & 2 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { FM analog } \\ & 7 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { FLA, FLC discrete } \\ & 7 \mathrm{~ms}+/-0.5 \mathrm{~ms} \mathrm{FLB}, \text { FLC discrete } \\ & 7 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { RY, RC discrete } \end{aligned}$
Accuracy	$+/-0.6 \%$ VIA for a temperature variation $60^{\circ} \mathrm{C}$ $+/-0.6 \%$ VIB for a temperature variation $60^{\circ} \mathrm{C}$ +/- 1% FM for a temperature variation $60^{\circ} \mathrm{C}$
Linearity error	$+/-0.15 \%$ of maximum value input VIA $+/-0.15 \%$ of maximum value input VIB +/- 0.2 \% output FM
Analogue output number	1
Analogue output type	Switch-configurable voltage FM 0... 10 V DC 7620 Ohm 10 bits Switch-configurable current FM 0... 20 mA 970 Ohm 10 bits
Discrete output number	2
Discrete output type	Configurable relay logic FLA, FLC NO 100000 cycles Configurable relay logic FLB, FLC NC 100000 cycles Configurable relay logic RY, RC NO 100000 cycles
Minimum switching current	3 mA 24 V DC configurable relay logic
Maximum switching current	5 A 250 V AC resistive cos phi $=1 \mathrm{~L} / \mathrm{R}=0 \mathrm{~ms}$ FL, R 5 A 30 V DC resistive $\cos \mathrm{phi}=1 \mathrm{~L} / \mathrm{R}=0 \mathrm{~ms}$ FL, R 2 A 250 V AC inductive $\cos \mathrm{phi}=0.4 \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms} F \mathrm{FL}, \mathrm{R}$ 2 A 30 V DC inductive cos phi $=0.4 \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$ FL, R
Discrete input type	Programmable F 24 V DC level 1 PLC 4700 Ohm Programmable R 24 V DC level 1 PLC 4700 Ohm Programmable RES 24 V DC level 1 PLC 4700 Ohm
Discrete input logic	Positive logic (source) F, R, RES $<=5 \mathrm{~V}>=11 \mathrm{~V}$ Negative logic (sink) F, R, RES >= $16 \mathrm{~V}<=10 \mathrm{~V}$
Acceleration and deceleration ramps	Automatic based on the load Linear adjustable separately from 0.01 to 3200 s
Braking to standstill	By DC injection
Protection type	Input phase breaks drive Line supply overvoltage and undervoltage drive Line supply undervoltage drive Overcurrent between output phases and earth drive Overheating protection drive Short-circuit between motor phases drive Thermal protection motor Motor phase break motor Break on the control circuit drive Thermal power stage drive Overvoltages on the DC bus drive Against exceeding limit speed drive Against input phase loss drive With PTC probes motor
Dielectric strength	2830 V DC between earth and power terminals 4230 V DC between control and power terminals
Insulation resistance	>= 1 MOhm 500 V DC for 1 minute
Frequency resolution	0.1 Hz display unit $0.024 / 50 \mathrm{~Hz}$ analog input
Communication port protocol	APOGEE FLN BACnet LonWorks METASYS N2 Modbus
Connector type	1 RJ45 1 open style
Physical interface	2-wire RS 485

Transmission frame	RTU
Transmission rate	9600 bps or 19200 bps
Data format	8 bits, 1 stop, odd even or no configurable parity
Type of polarization	No impedance
Number of addresses	1... 247
Communication service	Monitoring inhibitable Read device identification (43) Read holding registers (03) 2 words maximum Time out setting from 0.1 to 100 s Write multiple registers (16) 2 words maximum Write single register (06)
Option card	Communication card LonWorks
Operating position	Vertical +/-10 degree
Width	9.65 in (245 mm)
Height	12.99 in (330 mm)
Depth	7.48 in (190 mm)
Product weight	$25.46 \mathrm{lb}(\mathrm{US})(11.55 \mathrm{~kg})$
Power dissipation in W	629 W
Air flow	56798.01 Gal/hr(US) (215 m3/h)
Specific application	HVAC
IP degree of protection	IP21
Discrete and process manufacturing	Building - HVAC : compressor for scroll Building - HVAC : fan Building - HVAC : pump
Power range	15... 25 kW at 200... 240 V 3 phases
Motor starter type	Variable speed drive

Environment

electromagnetic compatibility	$1.2 / 50 \mu \mathrm{~s}-8 / 20$ s surge immunity test level 3 IEC 61000-4-5
	Electrical fast transient/burst immunity test level 4 IEC 61000-4-4
	Electrostatic discharge immunity test level 3 IEC 61000-4-2
	Radiated radio-frequency electromagnetic field immunity test level 3 IEC $61000-4-3$
	Conducted radio-frequency immunity test level 3 IEC 61000-4-6
	Voltage dips and interruptions immunity test IEC 61000-4-11

IEC 61800-3 environments 1 category C2
IEC 61800-3 environments 1 category C3
IEC 61800-3 environments 2 category C1
IEC 61800-3 environments 2 category C2
IEC 61800-3 environments 2 category C3
IEC 61800-5-1
UL Type 1

	UL Type 1
product certifications	CSA
	C-Tick
	NOM 117
marking	UL

Offer Sustainability
Green Premium product Green Premium product
Compliant - since 1101-Schneider Electric declaration Compliant - since 1101-Schneider Electric declaration of conformity of conformity

Reference not containing SVHC above the threshold	Reference not containing SVHC above the threshold
Available	Available
Available	Available

Contractual warranty
Warranty period 18 months

Dimensions

Plate for EMC mounting (supplied with the drive)
$\frac{\mathrm{mm}}{\mathrm{m}}$

(1) $2 \times \mathrm{M} 5$ screws

Mounting Recommendations

Clearance

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.

Install the unit vertically:

Do not place it close to heating elements.
। Leave sufficient free space to ensure that the air required for cooling purposes can circulate from bottom to the top of the unit. $\frac{m m}{m}$

Mounting Types
Type A mounting
mm

Type C mounting
$\frac{\mathrm{mm}}{\mathrm{in} \text {. }}$

By removing the protective blanking cover from the top of the drive, the degree of protection for the drive becomes IP21. The protective blanking cover may vary according to the drive model, see opposite.

Specific Recommendations for Mounting in an Enclosure

To help ensure proper air circulation in the drive:
। Fit ventilation grilles.
। Check that there is sufficient ventilation. If there is not, install a forced ventilation unit with a filter. The openings and/or fans must provide a flow rate at least equal to that of the drive fans (refer to the product characteristics).

। Use special filters with UL Type 12/IP54 protection.
। Remove the blanking cover from the top of the drive.

Sealed Metal Enclosure (IP54 Degree of Protection)

The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions, such as dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc. This enables the drive to be used in an enclosure where the maximum internal temperature reaches $50^{\circ} \mathrm{C}$.

Recommended Wiring Diagram
3-Phase Power Supply

A1: ATV 212 drive
KM1:Contactor
Q1: Circuit breaker
Q2: GV2 L rated at twice the nominal primary current of T1
Q3: GB2CB05
S1, XB4 B or XB5 A pushbuttons
S2:
T1: 100 VA transformer 220 V secondary
(1) Fault relay contacts for remote signalling of the drive status
(2) Connection of the common for the logic inputs depends on the positioning of the switch (Source, PLC, Sink)
(3) Reference potentiometer SZ1RV1202

All terminals are located at the bottom of the drive. Install interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Switches (Factory Settings)
Voltage/current selection for analog I/O (VIA and VIB)
 I
PTC

Voltage/current selection for analog I/O (FM)

Selection of logic type

(1) negative logic
(2) positive logic

Other Possible Wiring Diagrams

Logic Inputs According to the Position of the Logic Type Switch
"Source" position

"Sink" position

[^0]

2-wire contro

F: Forward
R: Preset speed
(2) ATV 212 control terminals

F: Forward
R: Stop
RES:Reverse
(2) ATV 212 control terminals

PTC probe

(2) ATV 212 control terminals
(3) Motor

Analog Inputs

Voltage analog inputs

Analog input configured for current: 0-20 mA, 4-20 mA, X-Y mA

(2) ATV 212 control terminals
(5) Source 0-20 mA, 4-20 mA, X-Y mA

Analog input VIA configured as positive logic input ("Source" position)

(2) ATV 212 control terminals

Analog input VIA configured as negative logic input ("Sink" position)

(2) ATV 212 control terminals

Derating Curves

The derating curves for the drive nominal current (In) depend on the temperature, the switching frequency and the mounting type (A, B or C).

For intermediate temperatures $\left(45^{\circ} \mathrm{C}\right.$ for example), interpolate between 2 curves.
${ }^{1 / \mathrm{In}}{ }_{\%}$

X Switching frequency

Our Proposal: Circuit Breaker + Contactor + Drive for Motor Power 15 kW and 200 VAC

Motor Power (kW)	Icu (kA)	Breaker	Contactor (*)	Motor Starter
15	50			ATV212HD15M3X

Non contractual pictures.
$\left.{ }^{*}\right)$ You can select the contactor proposed or variants. Please consider examples hereafter or follow the link to the complete offer.

Motor Power kW	Coil voltage VAC -50/60 Hz	24	48	110	115	220	230	400	Other
15	LC1D40A ..	B7	E7	F7	FE7	M7	P7	V7	Complete Offer

Motor Power kW	Coil voltage VDC - U 0.75...1.25 Uc	24	48	Other
15	LC1D40A ..	BD	ED	Complete Offer

[^0]: "PLC" position with PLC transistor outputs

