

RSS ROUND STRAIGHT STEEL

Catalog \#		Type
Project		
Comments		Date
Prepared by		

FEATURES

- ASTM Grade steel base plate with ASTM A366 base cover
- Hand hole assembly $3^{\prime \prime} \times 5$ " on 5 " and 6 " poles, 2 " x 4 " on 4 " poles
- 10'-30' mounting heights
- Drilled or tenon (specify)
-

DESIGN CONSIDERATIONS

Wind induced vibrations resulting from steady, unidirectional winds and other aerodynamic forces, as well as vibration and coefficient of height factors for non-grounded mounted installations (e.g., installations on bridges or buildings) are not included in this document. The information contained herein is for general guidance only and is not a replacment for professional judgement.
 White Paper for risk factors and design considerations. Learn more.

ORDERING INFORMATION

SAMPLE NUMBER: RSS4A20SF2XG

Product Family	Shaft Size (Inches) 1	Wall Thickness (Inches)	Mounting Height (Feet)	Base Type	Finish	Mounting Type	Number and Location of Arms	Options (Add as Suffix)
RSS=Round Straight Steel	$\begin{aligned} & \mathbf{4}=4^{\prime \prime} \\ & \mathbf{5}=5^{\prime \prime} \\ & \mathbf{6}=6^{\prime \prime} \end{aligned}$	$\begin{aligned} & \mathbf{A}=0.120^{\prime \prime}{ }^{2} \\ & \mathrm{M}=0.188^{\prime \prime} \end{aligned}$	$\begin{aligned} & 10=10^{\prime} \\ & 15=15^{\prime} \\ & 20=20^{\prime} \\ & 25=25^{\prime} \\ & 30=30^{\prime} \end{aligned}$	S=Square Steel Base	F=Dark Bronze G=Galvanized Steel J=Summit White K=Carbon Bronze L=Dark Platinum R=Hartford Green S=Silver T=Graphite Metallic V=Grey W=White X=Custom Color $\mathbf{Y}=$ Black	2=2-3/8" O.D. Tenon (4" Long) 3=3-1/2" O.D. Tenon (5" Long) 4=4" O.D. Tenon (6" Long) 9=3" O.D. Tenon (4" Long) 6=2-3/8" O.D. Tenon (6" Long) 7=4" O.D. Tenon (10" Long) A=Type A Drilling C=Type C Drilling $\mathrm{E}=$ Type E Drilling F=Type F Drilling G=Type G Drilling J=Type J Drilling K=Type K Drilling $\mathbf{M}=$ Type M Drilling $\mathbf{N}=$ Type N Drilling S=Standard Upsweep Arm $\mathbf{Z}=$ Type Z Drilling	$\begin{aligned} & \mathbf{1}=\text { Single } \\ & \mathbf{2}=2 \text { at } 180^{\circ} \\ & \mathbf{3}=\text { Triple }^{3} \\ & \mathbf{4}=4 \text { at } 90^{\circ} \\ & \mathbf{5}=2 \text { at } 90^{\circ} \\ & \mathbf{6}=3 \text { at } 90^{\circ} \\ & \mathbf{7}=2 \text { at } 120^{\circ} \\ & \mathbf{X}=\text { None } \end{aligned}$	A=1/2" Tapped Hub ${ }^{4}$ $B=3 / 4$ " Tapped Hub ${ }^{4}$ C=Convenience Outlet ${ }^{5}$ E=GFCI Convenience Outlet ${ }^{5}$ G=Ground Lug H=Additional Hand Hole ${ }^{6}$ V=Vibration Dampener

 located $12^{\prime \prime}$ below pole top and 90° from standard hand hole location, unless otherwise specified.

DIMENSIONS

Effective Projected Area (At Pole Top)

Mounting Height (Feet)	Catalog Number 1,2	Wall Thickness (Inches)	Base Square ${ }^{3}$ (Inches)	Bolt Circle Diameter (Inches)	Anchor Bolt Projection ${ }^{3}$ (Inches)	Shaft Size ${ }^{3}$ (Inches)	Anchor Bolt Diameter x Length x Hook (Inches)	Net Weight (Pounds)	Maxin	Effec Squa	e Project Feet) ${ }^{4}$	d Area	Max. Fixture Load Includes Bracket (Pounds)
MH			S	BC	BP	B	D \times AB \times H		80 mph	90 mph	100 mph	110 mph	
10	RSS4A10S	0.120	10-1/2	11	4-1/2	4	$3 / 4 \times 25 \times 3$	73	21.0	16.0	12.7	10.5	100
15	RSS4A15S	0.120	10-1/2	11	4-1/2	4	$3 / 4 \times 25 \times 3$	97	11.2	8.3	6.4	5.1	100
20	RSS4A20S	0.120	10-1/2	11	4-1/2	4	$3 / 4 \times 25 \times 3$	122	5.8	3.9	2.7	2.0	150
20	RSS5M20S	0.188	10-1/2	11	4-1/2	5	$3 / 4 \times 25 \times 3$	216	17.0	13.0	10.4	8.4	150
25	RSS5M25S	0.188	10-1/2	11	4-1/2	5	$3 / 4 \times 25 \times 3$	264	11.0	8.5	6.5	5.2	200
30	RSS6M30S	0.188	12-1/2	12-1/2	5	6	$1 \times 36 \times 4$	394	14.0	10.7	8.4	6.7	200

Effective Projected Area (Two Feet Above Pole Top)

Mounting Height (Feet)	Catalog Number ${ }^{1,2}$	Wall Thickness (Inches)	Base Square ${ }^{3}$ (Inches)	Bolt Circle Diameter (Inches)	Anchor Bolt Projection ${ }^{3}$ (Inches)	Shaft Size ${ }^{3}$ (Inches)	Anchor Bolt Diameter x Length x Hook (Inches)	Net Weight (Pounds)	Maxin	um Effec (Squa	e Project Feet) ${ }^{4}$	Area	Max. Fixture Load - Includes Bracket (Pounds)
MH			S	BC	BP	B	D \times AB $\times \mathrm{H}$		80 mph	90 mph	100 mph	110 mph	
10	RSS4A10S	0.120	10-1/2	11	4-1/2	4	$3 / 4 \times 25 \times 3$	73	16.7	13.0	10.4	8.5	100
15	RSS4A15S	0.120	10-1/2	11	4-1/2	4	$3 / 4 \times 25 \times 3$	97	9.8	7.2	5.6	4.4	100
20	RSS4A20S	0.120	10-1/2	11	4-1/2	4	$3 / 4 \times 25 \times 3$	122	5.3	3.5	2.4	1.8	150
20	RSS5M20S	0.188	10-1/2	11	4-1/2	5	$3 / 4 \times 25 \times 3$	216	15.0	11.7	9.2	7.5	150
25	RSS5M25S	0.188	10-1/2	11	4-1/2	5	$3 / 4 \times 25 \times 3$	264	10.2	7.8	6.0	4.8	200
30	RSS6M30S	0.188	12-1/2	12-1/2	5	6	$1 \times 36 \times 4$	394	13.1	10.0	7.8	5.9	200

NOTES:

1. Catalog number includes pole with hardware kit. Anchor bolts not included. Before installing, make sure proper anchor bolts and templates are obtained.
2. Tenon size or machining for rectangular arms must be specified. Hand hole position relative to drill location.
3. Shaft size, base square, anchor bolts and projections may vary slightly. All dimensions nominal.
4. EPAs based on shaft properties with wind normal to flat. EPAs calculated using base wind velocity as indicated plus 30% gust factor.
